If it's not what You are looking for type in the equation solver your own equation and let us solve it.
180y-4y^2+72=180
We move all terms to the left:
180y-4y^2+72-(180)=0
We add all the numbers together, and all the variables
-4y^2+180y-108=0
a = -4; b = 180; c = -108;
Δ = b2-4ac
Δ = 1802-4·(-4)·(-108)
Δ = 30672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30672}=\sqrt{144*213}=\sqrt{144}*\sqrt{213}=12\sqrt{213}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-12\sqrt{213}}{2*-4}=\frac{-180-12\sqrt{213}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+12\sqrt{213}}{2*-4}=\frac{-180+12\sqrt{213}}{-8} $
| 48+36+8t=180 | | 20k—19k=12 | | -8c=-60 | | 3/10y=6/5 | | -4(4-5v)=7v+36 | | −8(−5x−6)=21x+12 | | 6w+18=3w+30 | | 201+15b=24 | | 15+35x=75+25x | | 3c=-10 | | 35-4x=-95+6x | | 0.5b+4=2(6+2) | | -121/2+h=-8.5 | | 0x+4=-5x+14+13x | | 3.16=x/11 | | i/19=11 | | 10x=-10+8x | | 0x+2=3x+7 | | 4c-12=12 | | 275-25.25x+75.50x=500 | | 3x-1.1=7 | | 7x2+13=580 | | v-6/2=2 | | 15x-10x3=0 | | -0.02x=1.6 | | 25+1250x=2,500 | | Y(180-4y)+72=180 | | 2(x+7)-34=4x-11x+4x-4 | | x-11=6+ | | 1-3(5x-3)=5x+50 | | X+0=15x=3.45 | | 2x+35=5x-70 |